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Abstract

Semigroups S for which the Banach algebra `
1(S) is injective are investigated and

an application to the work of O. Yu. Aristov is described.

1 Introduction

Injective Banach algebras were introduced by Varopoulos in [12] and have continued to at-
tract investigation some 25 years later. In this note make some progress towards a structural
description of the semigroups S for which the Banach algebra `1(S) is injective.

To introduce our notation suppose that A and B are Banach algebras. We write A⊗B
for the algebraic tensor product over C, and A ⊗ε B for A ⊗ B equipped with (but not
completed in) the injective tensor norm

∥

∥

∥

∥

n
∑

i=1

ai ⊗ bi

∥

∥

∥

∥

ε

:= sup

{

∣

∣

∣

n
∑

i=1

f(ai)g(bi)
∣

∣

∣ : f ∈ A∗
1, g ∈ B∗

1

}

.

Tensor products and tensor norms are given a detailed treatment in [5], while [3, §42]
provides an introduction. Following Varopoulos we will say that a Banach algebras A is
injective if the mapping

RA : A⊗ε B −→ A
n
∑

i=1

ai ⊗ bi 7−→

n
∑

i=1

aibi

often called the product morphism, is bounded.
If S is a semigroup we write C[S] for the algebra of formal sums

x =
∑

s∈S

ξss (1)

for which only finitely many of the ξs ∈ C are non-zero. When equipped with the `1 norm

‖x‖1 :=
∑

s∈S

|ξs|

C[S] is a normed algebra whose completion is the `1 semigroup-algebra universally denoted
`1(S). We will always assume that our semigroups are countable and we use the notational
convention that a semigroup S has an unspecified but fixed enumeration of its elements i.e.
that S = {si : i ∈ N}.
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2 Necessary conditions

It is well-known that an injective Banach algebra is an operator algebra [10, Th. 4.2.26] and
so Arens regular [4]. Thus necessary conditions for a semigroup S to have `1(S) injective
follow immediately from the characterization of the semigroups S for which `1(S) is Arens
regular [11], [13] [2]. Indeed the title of [11] indicates that the Arens regularity of `1(S)
places strong restrictions on the structure of S, hence the injectivity of `1(S) more so.

The following lemma enables us to utilise the results above but at the same time to
exploit the stronger hypothesis of injectivity.

Lemma 2.1. Suppose that S and T are semigroups and that `1(T ) is not injective. Suppose

further that there are finite subsets T1, T2, . . . with

T1 ⊆ T2 ⊆ · · · ⊆ T

whose union is T and, if m = m(n) denotes the smallest integer such that T 2
n ⊆ Tm, that

there are maps
ψn : Tm(n) −→ S (n ∈ N)

with

ψn(a)ψn(b) = ψn(ab) (a, b ∈ Tn, n ∈ N).

Then `1(S) is not injective.

Proof. If K > 0 is given then, since `1(T ) is not injective, there is some u ∈ `1(T )⊗ε `
1(T )

with ‖u‖ε ≤ 1 and
∥

∥R`1(T )(u)
∥

∥

1
≥ K. Indeed, by a density argument, we assume that u

has a representation as a finite sum

u =
∑

i,j

ξi,jai ⊗ bj (ai, bj ∈ T )

and take n to be a number such that ai and bj are in Tn whenever ξi,j ∈ C is non-zero. The
map ψn has an obvious linearisation which we also denote ψn when we define

v =
∑

i,j

ξi,jψn(ai) ⊗ ψn(bj) ∈ `1(S) ⊗ε `
1(S).

Then we have

‖v‖ε = sup

{

∣

∣

∣

∑

i,j

ξi,jf (ψn(ai)) g (ψn(bj))
∣

∣

∣ : f, g ∈
(

`1(S)
)∗

1

}

≤ sup

{

∣

∣

∣

∑

i,j

ξi,jF (ai)G(bj)
∣

∣

∣ : F, G ∈
(

`1(T )
)∗

1

}

= ‖u‖ε (2)

since f◦ψn and g◦ψn are linear functionals on `1(Tm) of norm no greater than one, and so
may be extended to such on `1(T ) by the Hahn-Banach theorem. Then

R`1(S)(v) =
∑

i,j

ξi,jψn(ai)ψn(bj) = ψn

(

R`1(T )(u)
)

so that
∥

∥R`1(S)(v)
∥

∥

1
=
∥

∥ψn

(

R`1(T )(u)
)∥

∥

1
≥ K‖u‖ε ≥ ‖v‖ε

by (2), which completes the proof.
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Our first application of the lemma is to show that semigroups S with `1(S) injective are
“uniformly periodic”.

Proposition 2.2. If S is a semigroup with `1(S) is injective then there is a number N ∈ N

such that

card {sn : n ∈ N} ≤ N (s ∈ S).

In particular such a semigroup is periodic.

Proof. If there is no such N then for each n ∈ N we can find some s ∈ S such that
s, s2, . . . , s2n are distinct. Writing Tn = {1, 2, . . . , n} (considered as a subset of the semi-
group of N with addition as product) and defining

ψn : T2n −→ S

i 7−→ si

we see that the conditions of the lemma are met once we have shown that the semigroup
T = (N,+) has a semigroup algebra which is not injective. But it is not even Arens regular,
as is shown by a straightforward application of [2, Th. 2.7].

The hypothesis of injectivity in Proposition 2.2 cannot be weakened to that of Arens
regularity. To see this we observe the following fact whose proof, again, is a consequence
of [2, Th. 2.7].

Proposition 2.3. Let S be a semigroup with zero θ such that for each s ∈ S there are only

finitely many r ∈ S such that rs 6= θ and only finitely many t ∈ S such that st 6= θ. Then
`1(S) is Arens regular.

The conditions of Proposition 2.3 are met by the semigroup S which is the zero di-
rect product [7, Ch 3, Sect. 3] of a sequence of cyclic groups of increasing order. So we
find a semigroup that clearly does not satisfy the conditions of Proposition 2.2, but whose
semigroup algebra is not Arens regular.

The second application of Lemma 2.1 concerns the set E(S) of idempotents in a semi-
group S. Let ≤ denote the partial order on E(S) defined by

e ≤ f if and only if ef = fe = e.

Proposition 2.4. Let S be a semigroup such that `1(S) is injective. Then there is a number

N ∈ N such that no chain of idempotents in E(S) exceeds N in length.

Proof. If there is no such N then, for each n ∈ N, we can find some chain of n idempotents,
say en ≤ en−1 ≤ · · · ≤ e1. Writing Tn = {1, . . . , n} (considered as a subset of the semigroup
of N with the max product) and defining

ψn : Tn −→ S

i 7−→ en−i+1

we see that the conditions of Lemma 2.1 are met once we show that the semigroup (N,max)
has a semigroup algebra which is not injective. Again [2, Th. 2.7] shows that it is not even
Arens regular.
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One may show that Arens regularity cannot replace injectivity as the hypothesis of
Proposition 2.4. The method is similar to the above — consider the semigroup which is a
zero direct sum of a sequence of chains of increasing order. Notice, however, that the Arens
regularity of `1(S) implies that the chains of idempotents in S must at least be finite, else
S has a sub-semigroup isomorphic to (N,max).

The contrast between the associations of Arens regularity with finiteness and injectivity
with uniform boundedness seems a theme of subject and is maintained in the next section.

3 Sufficient conditions for semigroups with zero

For semigroups S with zero there are some conditions that force the injectivity of `1(S);
conditions which prescribe the sparsity of non-zero products in S. Our approach to these is
via a well known algebraic construction.

If S is a semigroup with zero θ then we will write Cr[S] for the reduced semigroup-algebra

of S; the linear algebra C[S]/C[{θ}], and denote by `1r(S) the completion of Cr(S) in the
`1 norm

∥

∥

∥

∥

∑

s∈S\{θ}

ξss

∥

∥

∥

∥

1

:=
∑

s∈S\{θ}

|ξs| .

Our interest in such algebras lies in the following fact whose proof is, but for a change
in notation, essentially the argument used by Varopoulos in [12] (and attributed there to S.
Kaijser) to show that `1 is injective.

Lemma 3.1 (Varopoulos 1972). Let S = {θ, e1, e2, . . .} be a countable semigroup with

zero θ and suppose that

u =

m
∑

i,j=1

ξi,jei ⊗ ej ∈ `1r(S) ⊗ε `
1
r(S).

Then for any permutation σ on {1, . . . ,m} the inequality

m
∑

i=1

∣

∣ξi,σ(i)

∣

∣ ≤ ‖u‖ε

obtains.

Proposition 3.2. Let S be a countable semigroup with zero θ. Suppose that there is some

K ∈ N such that for each non-zero s ∈ S there are at most K elements t ∈ S with st 6= θ
and at most K elements r ∈ S with rs 6= θ. Then `1r(S) is injective and

∥

∥R`1r(S)

∥

∥ ≤ K.

Proof. We write S = {θ, e1, e2, . . .} and suppose that u ∈ `1r(S) ⊗ε `
1
r(S) is of the form

u =

m
∑

i,j=1

ξi,jei ⊗ ej . (3)

We set M = max {n : eiej = en for some i, j = 1, 2, . . . ,m} so that

R`1r(S)(u) =

m
∑

i,j=1

ξi,jeiej =

M
∑

k=1

(

∑

eiej=ek

ξi,j

)

ek
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from which we obtain the inequality

∥

∥R`1r(S)(u)
∥

∥ ≤
∑

1≤i,j≤m
eiej 6=θ

|ξi,j | . (4)

Setting

λi,j =

{

0 if eiej = θ or

|ξi,j | otherwise

we see that the right-hand side of (4) is the summation over the elements of the m × m
matrix Λ = [λi,j ], a matrix which has at most K non-zero elements in each row and in each
column. Such a matrix can be written as the sum of exactly K matrices with at most one
non-zero element of Λ in each row and in each column (this is shown in Mirsky’s book [9,
Th. 11.1.6]) and so the right-hand side of (4) is the sum of exactly K sums of the form

m
∑

i=1

∣

∣ξi,σ(i)

∣

∣ .

Hence, applying Lemma 3.1, we find that

∥

∥R`1r(S)(u)
∥

∥ ≤ K‖u‖ε

for all u of the form (3). The result now follows from the fact that such elements are dense
in `1r(S) ⊗ε `

1
r(S).

Notice that Proposition 3.2 applied to the semigroup S = {θ, e1, e2, . . .} with product

eiej =

{

ei if i = j, or

θ otherwise

shows that `1r(S), which is clearly isomorphic with `1, is injective. Thus we recover the
result and implicit bound described in Varopoulos ibid.

We can apply Proposition 3.2 to the subject of this article by use of the following theorem.

Theorem 3.3. Let S be a countable semigroup with zero θ and such that `1r(S) is injective.

Then `1(S) is injective and
∥

∥R`1(S)

∥

∥ ≤ 6
∥

∥R`1r(S)

∥

∥+ 1.

Proof. We will write S = {e0, e1, . . .}, where e0 = θ, for simplicity of notation. If

u =

m
∑

i,j=0

ξi,jei ⊗ ej ∈ `1(S) ⊗ε `
1(S) (5)

then
∣

∣

∣

∣

∣

m
∑

i,j=0

ξi,j

∣

∣

∣

∣

∣

≤ ‖u‖ε

and since
∑

eiej=e0

ξi,j =

∞
∑

k=0

(

∑

eiej=ek

ξi,j

)

−

∞
∑

k=1

(

∑

eiej=ek

ξi,j

)
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we find that
∣

∣

∣

∣

∣

∑

eiej=e0

ξi,j

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

m
∑

i,j=0

ξi,j

∣

∣

∣

∣

∣

+

∞
∑

k=1

∣

∣

∣

∣

∣

∑

eiej=ek

ξi,j

∣

∣

∣

∣

∣

≤ ‖u‖ε +

∞
∑

k=1

∣

∣

∣

∣

∣

∑

eiej=ek

ξi,j

∣

∣

∣

∣

∣

which gives that

∥

∥R`1(S)(u)
∥

∥

1
=

∞
∑

k=0

∣

∣

∣

∣

∣

∑

eiej=ek

ξi,j

∣

∣

∣

∣

∣

≤ ‖u‖ε + 2

∞
∑

k=1

∣

∣

∣

∣

∣

∑

eiej=ek

ξi,j

∣

∣

∣

∣

∣

. (6)

Now

∞
∑

k=1

∣

∣

∣

∣

∣

∑

eiej=ek

ξi,j

∣

∣

∣

∣

∣

=

∥

∥

∥

∥

∥

R`1r(S)

(

m
∑

i,j=1

ξi,jei ⊗ ej

)∥

∥

∥

∥

∥

1

≤
∥

∥R`1r(S)

∥

∥

∥

∥

∥

∥

∥

m
∑

i,j=1

ξi,jei ⊗ ej

∥

∥

∥

∥

∥

`1r(S)⊗ε`1r(S)

=
∥

∥R`1r(S)

∥

∥

∥

∥

∥

∥

∥

m
∑

i,j=1

ξi,jei ⊗ ej

∥

∥

∥

∥

∥

`1(S)⊗ε`1(S)

, (7)

since injective tensor products preserve subspaces [5, §4.3], and since

m
∑

i,j=1

ξi,jei ⊗ ej = u−

(

m
∑

i=0

ξi,0ei

)

⊗ e0 − e0 ⊗





m
∑

j=1

ξ0,jej





we have
∥

∥

∥

∥

∥

∥

m
∑

i,j=1

ξi,jei ⊗ ej

∥

∥

∥

∥

∥

∥

ε

≤ ‖u‖ε + ‖e0‖1





∥

∥

∥

∥

∥

m
∑

i=0

ξi,0ei

∥

∥

∥

∥

∥

1

+

∥

∥

∥

∥

∥

m
∑

j=1

ξ0,jej

∥

∥

∥

∥

∥

1





= ‖u‖ε +

m
∑

i=0

|ξi,0| +

m
∑

j=1

|ξ0,j |

≤ 3‖u‖ε. (8)

Combining the inequalities (6), (7) and (8) now gives the bound

∥

∥R`1(S)(u)
∥

∥

1
≤ 6
∥

∥R`1r(S)(u)
∥

∥

1
+ ‖u‖1

for elements u of the form (5). This bound extends to the closure and so proves the theorem.

Corollary 3.4. Let S be a countable semigroup with zero θ. Suppose that there is some
K ∈ N such that for each non-zero s ∈ S there are at most K elements t ∈ S with st 6= θ
and at most K elements r ∈ S with rs 6= θ. Then `1(S) is injective and

∥

∥R`1(S)

∥

∥ ≤ 6K+1.
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We remark that the above results do not provide a characterisation of the semigroups
with zero such that `1(S) is injective. Consider the semigroup S = {θ, e1, e2, . . .} with
product eiej = ei (i, j ∈ N). Clearly S satisfies the conclusions of Propositions 2.2 and 2.4,
while not the hypotheses of Corollary 3.4.

To conclude this section we invite the reader to compare Corollary 3.4 with Proposi-
tion 2.3.

4 The weighted case and an application

Some of what is described above can be extended to cover the weighted case: if S is a
semigroup with zero θ say that ω : S\ {θ} → (0,∞) is an algebra weight if

ω(st) ≤ ω(s)ω(t) (s, t, st ∈ S\ {θ}).

The weighted reduced semigroup algebra `1r(S, ω) is then defined analogously to `1r(S); the
completion of Cr[S] with respect to the norm

∥

∥

∥

∥

∑

s∈S\{θ}

ξss

∥

∥

∥

∥

ω

:=
∑

s∈S\{θ}

|ξs|ω(s).

In particular the following version of Varopoulos’s Lemma holds, the proof again being an
increment on that in [12].

Lemma 4.1. Let S = {θ, e1, e2, . . .} be a countable semigroup with zero θ, ω an algebra
weight and suppose that

u =

m
∑

i,j=1

ξi,jei ⊗ ej ∈ `1r(S) ⊗ε `
1
r(S).

Then for any permutation σ on {1, . . . ,m} the inequality

m
∑

i=1

∣

∣ξi,σ(i)

∣

∣ω(ei)ω(eσ(i)) ≤ ‖u‖ε

obtains.

The point of passing to the weighted case is that a sufficiently rapid rate of decrease in
the weight can play the role that finiteness does in the unweighted case.

Let ei,j denote the infinite matrix with one as the i, j-th entry and zeros elsewhere, and
θ the infinite matrix of zeros. Then with the usual matrix multiplication the set

S := {ei,j : 1 ≤ i < j} ∪ {θ}

is a semigroup with zero. Define a weight ω on S\ {θ} by

ω(i, j) = 2−(j−i)2 (1 ≤ i < j).

To see that this is an algebra-weight note that

ω(i, j)ω(j, k) = 2−(j−i)2−(k−j)2

= 22(j−i)(k−j)ω(i, k)
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and so, by a short calculation,

ω(i, k) ≤ 2−2(j−i)(k−j)ω(i, j)ω(j, k)

≤ 2−2(k−i−1)ω(i, j)ω(j, k).

Proposition 4.2. With S and ω defined as above, the Banach algebra A = `1r(S, ω) is

injective.

Proof. Suppose that u ∈ A⊗ε A is of the form

u =
∑

i<j, k<l

ξi,j,k,lei,j ⊗ ek,l

where only finitely many of the ξi,j,k,l are non-zero. Then

RA(u) =
∑

i<j<l

ξi,j,j,lei,l =

∞
∑

m=2

∑

i<j<i+m

ξi,j,j,i+mei,i+m

so that

‖RA(u)‖ω =

∞
∑

m=2

∑

i<j<i+m

|ξi,j,j,i+m|ω(i, i+m)

≤

∞
∑

m=2

∑

i<j<i+m

|ξi,j,j,i+m| 2−2(m−1)ω(i, j)ω(j, i+m)

=

∞
∑

m=2

2−2(m−1)
∑

i<j<i+m

|ξi,j,j,i+m|ω(i, j)ω(j, i+m). (9)

Now, with m fixed, for each pair (i, j) there is exactly one pair (k, l) such that ξi,j,k,l occurs
in the inner sum of (9). Thus, by a suitable relabelling of the semigroup elements ei,j , we
can apply Lemma 4.1 to obtain

∑

i<j<i+m

|ξi,j,j,i+m|ω(i, j)ω(j, i+m) ≤ ‖u‖ε (m = 2, 3, . . .)

and so from (9)

RA(u) ≤

∞
∑

m=2

2−2(m−1)‖u‖ε =
1

3
‖u‖ε.

The result now follows since elements of the form u (i.e. those with finite support) are dense
in A⊗ε A.

We find the injectivity of this example to be of interest for the following reason. In [1]
Aristov shows that a C∗-algebra is injective if and only if it is subhomogeneous, i.e. if there
is some uniform bound on the dimensions of its continuous irreducible representations. It is
well known that a semisimple Banach algebra is subhomogeneous if and only if it satisfies
a polynomial identity [8, Prop. 6.1] so it is natural to ask whether these three properties
coincide for Banach algebras more general than C∗-algebras. That there are commutative
semisimple Banach algebras which are not Arens regular (for example `1(Z)) gives a negative
answer in one direction while the above Proposition gives a partial negative answer in the
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opposite direction once we note that A does not satisfy a polynomial identity. If an algebra
(not even necessarily normed) satisfies a polynomial identity then it satisfies a homogeneous
multilinear identity of no greater degree [6, Lemma 6.2.4], so it suffices to show that A does
not satisfy an identity of the form

p(X1, . . . , Xn) := X1 . . . Xn +
∑

σ 6=1

λσXσ(1) . . . Xσ(n)

where the summation is over all non-trivial permutations on {1, . . . , n}. But this is obvious
since A contains half of “Kaplansky’s staircase”

p(e1,2, e2,3, . . . , en,n+1) = e1,n+2 6= 0.

We conclude by mentioning that A is a radical Banach algebra and so trivially subho-
mogeneous. Thus it does provide an answer to the more difficult question as to whether
there is a semisimple injective Banach algebra that does not satisfy a polynomial identity,
or equivalently is not subhomogeneous.
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